3.7.60 \(\int \frac {1}{(d f+e f x)^3 (a+b (d+e x)^2+c (d+e x)^4)^3} \, dx\) [660]

3.7.60.1 Optimal result
3.7.60.2 Mathematica [A] (verified)
3.7.60.3 Rubi [A] (verified)
3.7.60.4 Maple [C] (verified)
3.7.60.5 Fricas [B] (verification not implemented)
3.7.60.6 Sympy [F(-1)]
3.7.60.7 Maxima [F]
3.7.60.8 Giac [B] (verification not implemented)
3.7.60.9 Mupad [B] (verification not implemented)

3.7.60.1 Optimal result

Integrand size = 33, antiderivative size = 343 \[ \int \frac {1}{(d f+e f x)^3 \left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx=-\frac {3 \left (b^2-5 a c\right ) \left (b^2-2 a c\right )}{2 a^3 \left (b^2-4 a c\right )^2 e f^3 (d+e x)^2}+\frac {b^2-2 a c+b c (d+e x)^2}{4 a \left (b^2-4 a c\right ) e f^3 (d+e x)^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac {3 b^4-20 a b^2 c+20 a^2 c^2+3 b c \left (b^2-6 a c\right ) (d+e x)^2}{4 a^2 \left (b^2-4 a c\right )^2 e f^3 (d+e x)^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac {3 \left (b^6-10 a b^4 c+30 a^2 b^2 c^2-20 a^3 c^3\right ) \text {arctanh}\left (\frac {b+2 c (d+e x)^2}{\sqrt {b^2-4 a c}}\right )}{2 a^4 \left (b^2-4 a c\right )^{5/2} e f^3}-\frac {3 b \log (d+e x)}{a^4 e f^3}+\frac {3 b \log \left (a+b (d+e x)^2+c (d+e x)^4\right )}{4 a^4 e f^3} \]

output
-3/2*(-5*a*c+b^2)*(-2*a*c+b^2)/a^3/(-4*a*c+b^2)^2/e/f^3/(e*x+d)^2+1/4*(b^2 
-2*a*c+b*c*(e*x+d)^2)/a/(-4*a*c+b^2)/e/f^3/(e*x+d)^2/(a+b*(e*x+d)^2+c*(e*x 
+d)^4)^2+1/4*(3*b^4-20*a*b^2*c+20*a^2*c^2+3*b*c*(-6*a*c+b^2)*(e*x+d)^2)/a^ 
2/(-4*a*c+b^2)^2/e/f^3/(e*x+d)^2/(a+b*(e*x+d)^2+c*(e*x+d)^4)-3/2*(-20*a^3* 
c^3+30*a^2*b^2*c^2-10*a*b^4*c+b^6)*arctanh((b+2*c*(e*x+d)^2)/(-4*a*c+b^2)^ 
(1/2))/a^4/(-4*a*c+b^2)^(5/2)/e/f^3-3*b*ln(e*x+d)/a^4/e/f^3+3/4*b*ln(a+b*( 
e*x+d)^2+c*(e*x+d)^4)/a^4/e/f^3
 
3.7.60.2 Mathematica [A] (verified)

Time = 6.06 (sec) , antiderivative size = 461, normalized size of antiderivative = 1.34 \[ \int \frac {1}{(d f+e f x)^3 \left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx=\frac {-\frac {2 a}{(d+e x)^2}+\frac {a^2 \left (b^3-3 a b c+b^2 c (d+e x)^2-2 a c^2 (d+e x)^2\right )}{\left (-b^2+4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}-\frac {a \left (4 b^5-29 a b^3 c+46 a^2 b c^2+4 b^4 c (d+e x)^2-26 a b^2 c^2 (d+e x)^2+28 a^2 c^3 (d+e x)^2\right )}{\left (b^2-4 a c\right )^2 \left (a+(d+e x)^2 \left (b+c (d+e x)^2\right )\right )}-12 b \log (d+e x)+\frac {3 \left (b^6-10 a b^4 c+30 a^2 b^2 c^2-20 a^3 c^3+b^5 \sqrt {b^2-4 a c}-8 a b^3 c \sqrt {b^2-4 a c}+16 a^2 b c^2 \sqrt {b^2-4 a c}\right ) \log \left (b-\sqrt {b^2-4 a c}+2 c (d+e x)^2\right )}{\left (b^2-4 a c\right )^{5/2}}+\frac {3 \left (-b^6+10 a b^4 c-30 a^2 b^2 c^2+20 a^3 c^3+b^5 \sqrt {b^2-4 a c}-8 a b^3 c \sqrt {b^2-4 a c}+16 a^2 b c^2 \sqrt {b^2-4 a c}\right ) \log \left (b+\sqrt {b^2-4 a c}+2 c (d+e x)^2\right )}{\left (b^2-4 a c\right )^{5/2}}}{4 a^4 e f^3} \]

input
Integrate[1/((d*f + e*f*x)^3*(a + b*(d + e*x)^2 + c*(d + e*x)^4)^3),x]
 
output
((-2*a)/(d + e*x)^2 + (a^2*(b^3 - 3*a*b*c + b^2*c*(d + e*x)^2 - 2*a*c^2*(d 
 + e*x)^2))/((-b^2 + 4*a*c)*(a + b*(d + e*x)^2 + c*(d + e*x)^4)^2) - (a*(4 
*b^5 - 29*a*b^3*c + 46*a^2*b*c^2 + 4*b^4*c*(d + e*x)^2 - 26*a*b^2*c^2*(d + 
 e*x)^2 + 28*a^2*c^3*(d + e*x)^2))/((b^2 - 4*a*c)^2*(a + (d + e*x)^2*(b + 
c*(d + e*x)^2))) - 12*b*Log[d + e*x] + (3*(b^6 - 10*a*b^4*c + 30*a^2*b^2*c 
^2 - 20*a^3*c^3 + b^5*Sqrt[b^2 - 4*a*c] - 8*a*b^3*c*Sqrt[b^2 - 4*a*c] + 16 
*a^2*b*c^2*Sqrt[b^2 - 4*a*c])*Log[b - Sqrt[b^2 - 4*a*c] + 2*c*(d + e*x)^2] 
)/(b^2 - 4*a*c)^(5/2) + (3*(-b^6 + 10*a*b^4*c - 30*a^2*b^2*c^2 + 20*a^3*c^ 
3 + b^5*Sqrt[b^2 - 4*a*c] - 8*a*b^3*c*Sqrt[b^2 - 4*a*c] + 16*a^2*b*c^2*Sqr 
t[b^2 - 4*a*c])*Log[b + Sqrt[b^2 - 4*a*c] + 2*c*(d + e*x)^2])/(b^2 - 4*a*c 
)^(5/2))/(4*a^4*e*f^3)
 
3.7.60.3 Rubi [A] (verified)

Time = 0.59 (sec) , antiderivative size = 356, normalized size of antiderivative = 1.04, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.242, Rules used = {1462, 1434, 1165, 25, 1235, 27, 1200, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(d f+e f x)^3 \left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx\)

\(\Big \downarrow \) 1462

\(\displaystyle \frac {\int \frac {1}{(d+e x)^3 \left (c (d+e x)^4+b (d+e x)^2+a\right )^3}d(d+e x)}{e f^3}\)

\(\Big \downarrow \) 1434

\(\displaystyle \frac {\int \frac {1}{(d+e x)^4 \left (c (d+e x)^4+b (d+e x)^2+a\right )^3}d(d+e x)^2}{2 e f^3}\)

\(\Big \downarrow \) 1165

\(\displaystyle \frac {\frac {-2 a c+b^2+b c (d+e x)^2}{2 a \left (b^2-4 a c\right ) (d+e x)^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}-\frac {\int -\frac {3 b^2+4 c (d+e x)^2 b-10 a c}{(d+e x)^4 \left (c (d+e x)^4+b (d+e x)^2+a\right )^2}d(d+e x)^2}{2 a \left (b^2-4 a c\right )}}{2 e f^3}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\int \frac {3 b^2+4 c (d+e x)^2 b-10 a c}{(d+e x)^4 \left (c (d+e x)^4+b (d+e x)^2+a\right )^2}d(d+e x)^2}{2 a \left (b^2-4 a c\right )}+\frac {-2 a c+b^2+b c (d+e x)^2}{2 a \left (b^2-4 a c\right ) (d+e x)^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}}{2 e f^3}\)

\(\Big \downarrow \) 1235

\(\displaystyle \frac {\frac {\frac {20 a^2 c^2+3 b c \left (b^2-6 a c\right ) (d+e x)^2-20 a b^2 c+3 b^4}{a \left (b^2-4 a c\right ) (d+e x)^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac {\int -\frac {6 \left (b c \left (b^2-6 a c\right ) (d+e x)^2+\left (b^2-5 a c\right ) \left (b^2-2 a c\right )\right )}{(d+e x)^4 \left (c (d+e x)^4+b (d+e x)^2+a\right )}d(d+e x)^2}{a \left (b^2-4 a c\right )}}{2 a \left (b^2-4 a c\right )}+\frac {-2 a c+b^2+b c (d+e x)^2}{2 a \left (b^2-4 a c\right ) (d+e x)^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}}{2 e f^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {6 \int \frac {b c \left (b^2-6 a c\right ) (d+e x)^2+\left (b^2-5 a c\right ) \left (b^2-2 a c\right )}{(d+e x)^4 \left (c (d+e x)^4+b (d+e x)^2+a\right )}d(d+e x)^2}{a \left (b^2-4 a c\right )}+\frac {20 a^2 c^2+3 b c \left (b^2-6 a c\right ) (d+e x)^2-20 a b^2 c+3 b^4}{a \left (b^2-4 a c\right ) (d+e x)^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )}}{2 a \left (b^2-4 a c\right )}+\frac {-2 a c+b^2+b c (d+e x)^2}{2 a \left (b^2-4 a c\right ) (d+e x)^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}}{2 e f^3}\)

\(\Big \downarrow \) 1200

\(\displaystyle \frac {\frac {\frac {6 \int \left (-\frac {b \left (4 a c-b^2\right )^2}{a^2 (d+e x)^2}+\frac {b^6-9 a c b^4+23 a^2 c^2 b^2+c \left (b^2-4 a c\right )^2 (d+e x)^2 b-10 a^3 c^3}{a^2 \left (c (d+e x)^4+b (d+e x)^2+a\right )}+\frac {\left (b^2-5 a c\right ) \left (b^2-2 a c\right )}{a (d+e x)^4}\right )d(d+e x)^2}{a \left (b^2-4 a c\right )}+\frac {20 a^2 c^2+3 b c \left (b^2-6 a c\right ) (d+e x)^2-20 a b^2 c+3 b^4}{a \left (b^2-4 a c\right ) (d+e x)^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )}}{2 a \left (b^2-4 a c\right )}+\frac {-2 a c+b^2+b c (d+e x)^2}{2 a \left (b^2-4 a c\right ) (d+e x)^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}}{2 e f^3}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {\frac {20 a^2 c^2+3 b c \left (b^2-6 a c\right ) (d+e x)^2-20 a b^2 c+3 b^4}{a \left (b^2-4 a c\right ) (d+e x)^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )}+\frac {6 \left (-\frac {b \left (b^2-4 a c\right )^2 \log \left ((d+e x)^2\right )}{a^2}+\frac {b \left (b^2-4 a c\right )^2 \log \left (a+b (d+e x)^2+c (d+e x)^4\right )}{2 a^2}-\frac {\left (-20 a^3 c^3+30 a^2 b^2 c^2-10 a b^4 c+b^6\right ) \text {arctanh}\left (\frac {b+2 c (d+e x)^2}{\sqrt {b^2-4 a c}}\right )}{a^2 \sqrt {b^2-4 a c}}-\frac {\left (b^2-5 a c\right ) \left (b^2-2 a c\right )}{a (d+e x)^2}\right )}{a \left (b^2-4 a c\right )}}{2 a \left (b^2-4 a c\right )}+\frac {-2 a c+b^2+b c (d+e x)^2}{2 a \left (b^2-4 a c\right ) (d+e x)^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}}{2 e f^3}\)

input
Int[1/((d*f + e*f*x)^3*(a + b*(d + e*x)^2 + c*(d + e*x)^4)^3),x]
 
output
((b^2 - 2*a*c + b*c*(d + e*x)^2)/(2*a*(b^2 - 4*a*c)*(d + e*x)^2*(a + b*(d 
+ e*x)^2 + c*(d + e*x)^4)^2) + ((3*b^4 - 20*a*b^2*c + 20*a^2*c^2 + 3*b*c*( 
b^2 - 6*a*c)*(d + e*x)^2)/(a*(b^2 - 4*a*c)*(d + e*x)^2*(a + b*(d + e*x)^2 
+ c*(d + e*x)^4)) + (6*(-(((b^2 - 5*a*c)*(b^2 - 2*a*c))/(a*(d + e*x)^2)) - 
 ((b^6 - 10*a*b^4*c + 30*a^2*b^2*c^2 - 20*a^3*c^3)*ArcTanh[(b + 2*c*(d + e 
*x)^2)/Sqrt[b^2 - 4*a*c]])/(a^2*Sqrt[b^2 - 4*a*c]) - (b*(b^2 - 4*a*c)^2*Lo 
g[(d + e*x)^2])/a^2 + (b*(b^2 - 4*a*c)^2*Log[a + b*(d + e*x)^2 + c*(d + e* 
x)^4])/(2*a^2)))/(a*(b^2 - 4*a*c)))/(2*a*(b^2 - 4*a*c)))/(2*e*f^3)
 

3.7.60.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 1165
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_S 
ymbol] :> Simp[(d + e*x)^(m + 1)*(b*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e) 
*x)*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^ 
2))), x] + Simp[1/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2))   Int[(d 
+ e*x)^m*Simp[b*c*d*e*(2*p - m + 2) + b^2*e^2*(m + p + 2) - 2*c^2*d^2*(2*p 
+ 3) - 2*a*c*e^2*(m + 2*p + 3) - c*e*(2*c*d - b*e)*(m + 2*p + 4)*x, x]*(a + 
 b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && LtQ[p, -1] 
 && IntQuadraticQ[a, b, c, d, e, m, p, x]
 

rule 1200
Int[(((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.))/((a_.) + (b_.)* 
(x_) + (c_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegrand[(d + e*x)^m*((f + g* 
x)^n/(a + b*x + c*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && In 
tegersQ[n]
 

rule 1235
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*(f*(b*c*d - b^2*e + 2 
*a*c*e) - a*g*(2*c*d - b*e) + c*(f*(2*c*d - b*e) - g*(b*d - 2*a*e))*x)*((a 
+ b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2))), x] 
 + Simp[1/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2))   Int[(d + e*x)^m 
*(a + b*x + c*x^2)^(p + 1)*Simp[f*(b*c*d*e*(2*p - m + 2) + b^2*e^2*(p + m + 
 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3)) - g*(a*e*(b*e - 2*c*d* 
m + b*e*m) - b*d*(3*c*d - b*e + 2*c*d*p - b*e*p)) + c*e*(g*(b*d - 2*a*e) - 
f*(2*c*d - b*e))*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, 
 m}, x] && LtQ[p, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p] 
)
 

rule 1434
Int[(x_)^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp 
[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x + c*x^2)^p, x], x, x^2], x] /; Free 
Q[{a, b, c, p}, x] && IntegerQ[(m - 1)/2]
 

rule 1462
Int[(u_)^(m_.)*((a_.) + (b_.)*(v_)^2 + (c_.)*(v_)^4)^(p_.), x_Symbol] :> Si 
mp[u^m/(Coefficient[v, x, 1]*v^m)   Subst[Int[x^m*(a + b*x^2 + c*x^(2*2))^p 
, x], x, v], x] /; FreeQ[{a, b, c, m, p}, x] && LinearPairQ[u, v, x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
3.7.60.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 1.00 (sec) , antiderivative size = 1145, normalized size of antiderivative = 3.34

method result size
default \(\text {Expression too large to display}\) \(1145\)
risch \(\text {Expression too large to display}\) \(2364\)

input
int(1/(e*f*x+d*f)^3/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x,method=_RETURNVERBOSE)
 
output
1/f^3*(-1/a^4*((1/2*c^2*e^5*(14*a^2*c^2-13*a*b^2*c+2*b^4)*a/(16*a^2*c^2-8* 
a*b^2*c+b^4)*x^6+3*(14*a^2*c^2-13*a*b^2*c+2*b^4)*a*c^2*d*e^4/(16*a^2*c^2-8 
*a*b^2*c+b^4)*x^5+1/4*e^3*a*c*(420*a^2*c^3*d^2-390*a*b^2*c^2*d^2+60*b^4*c* 
d^2+74*a^2*b*c^2-55*a*b^3*c+8*b^5)/(16*a^2*c^2-8*a*b^2*c+b^4)*x^4+c*d*e^2* 
a*(140*a^2*c^3*d^2-130*a*b^2*c^2*d^2+20*b^4*c*d^2+74*a^2*b*c^2-55*a*b^3*c+ 
8*b^5)/(16*a^2*c^2-8*a*b^2*c+b^4)*x^3+1/2*e*a*(210*a^2*c^4*d^4-195*a*b^2*c 
^3*d^4+30*b^4*c^2*d^4+222*a^2*b*c^3*d^2-165*a*b^3*c^2*d^2+24*b^5*c*d^2+18* 
a^3*c^3+7*a^2*b^2*c^2-12*a*b^4*c+2*b^6)/(16*a^2*c^2-8*a*b^2*c+b^4)*x^2+d*a 
*(42*a^2*c^4*d^4-39*a*b^2*c^3*d^4+6*b^4*c^2*d^4+74*a^2*b*c^3*d^2-55*a*b^3* 
c^2*d^2+8*b^5*c*d^2+18*a^3*c^3+7*a^2*b^2*c^2-12*a*b^4*c+2*b^6)/(16*a^2*c^2 
-8*a*b^2*c+b^4)*x+1/4/e*a*(28*a^2*c^4*d^6-26*a*b^2*c^3*d^6+4*b^4*c^2*d^6+7 
4*a^2*b*c^3*d^4-55*a*b^3*c^2*d^4+8*b^5*c*d^4+36*a^3*c^3*d^2+14*a^2*b^2*c^2 
*d^2-24*a*b^4*c*d^2+4*b^6*d^2+58*a^3*b*c^2-36*a^2*b^3*c+5*a*b^5)/(16*a^2*c 
^2-8*a*b^2*c+b^4))/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b* 
e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2+3/2/(16*a^2*c^2-8*a*b^2*c+b^4)/e*sum((e 
^3*b*c*(-16*a^2*c^2+8*a*b^2*c-b^4)*_R^3+3*d*e^2*b*c*(-16*a^2*c^2+8*a*b^2*c 
-b^4)*_R^2+e*(-48*a^2*b*c^3*d^2+24*a*b^3*c^2*d^2-3*b^5*c*d^2+10*a^3*c^3-23 
*a^2*b^2*c^2+9*a*b^4*c-b^6)*_R-16*a^2*b*c^3*d^3+8*a*b^3*c^2*d^3-b^5*c*d^3+ 
10*a^3*c^3*d-23*a^2*b^2*c^2*d+9*a*b^4*c*d-b^6*d)/(2*_R^3*c*e^3+6*_R^2*c*d* 
e^2+6*_R*c*d^2*e+2*c*d^3+_R*b*e+b*d)*ln(x-_R),_R=RootOf(c*e^4*_Z^4+4*c*...
 
3.7.60.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 7550 vs. \(2 (329) = 658\).

Time = 4.42 (sec) , antiderivative size = 15231, normalized size of antiderivative = 44.41 \[ \int \frac {1}{(d f+e f x)^3 \left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx=\text {Too large to display} \]

input
integrate(1/(e*f*x+d*f)^3/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x, algorithm="fric 
as")
 
output
Too large to include
 
3.7.60.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(d f+e f x)^3 \left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx=\text {Timed out} \]

input
integrate(1/(e*f*x+d*f)**3/(a+b*(e*x+d)**2+c*(e*x+d)**4)**3,x)
 
output
Timed out
 
3.7.60.7 Maxima [F]

\[ \int \frac {1}{(d f+e f x)^3 \left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx=\int { \frac {1}{{\left ({\left (e x + d\right )}^{4} c + {\left (e x + d\right )}^{2} b + a\right )}^{3} {\left (e f x + d f\right )}^{3}} \,d x } \]

input
integrate(1/(e*f*x+d*f)^3/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x, algorithm="maxi 
ma")
 
output
-1/4*(6*(b^4*c^2 - 7*a*b^2*c^3 + 10*a^2*c^4)*e^8*x^8 + 48*(b^4*c^2 - 7*a*b 
^2*c^3 + 10*a^2*c^4)*d*e^7*x^7 + 3*(4*b^5*c - 29*a*b^3*c^2 + 46*a^2*b*c^3 
+ 56*(b^4*c^2 - 7*a*b^2*c^3 + 10*a^2*c^4)*d^2)*e^6*x^6 + 6*(56*(b^4*c^2 - 
7*a*b^2*c^3 + 10*a^2*c^4)*d^3 + 3*(4*b^5*c - 29*a*b^3*c^2 + 46*a^2*b*c^3)* 
d)*e^5*x^5 + 6*(b^4*c^2 - 7*a*b^2*c^3 + 10*a^2*c^4)*d^8 + (6*b^6 - 36*a*b^ 
4*c + 14*a^2*b^2*c^2 + 100*a^3*c^3 + 420*(b^4*c^2 - 7*a*b^2*c^3 + 10*a^2*c 
^4)*d^4 + 45*(4*b^5*c - 29*a*b^3*c^2 + 46*a^2*b*c^3)*d^2)*e^4*x^4 + 3*(4*b 
^5*c - 29*a*b^3*c^2 + 46*a^2*b*c^3)*d^6 + 4*(84*(b^4*c^2 - 7*a*b^2*c^3 + 1 
0*a^2*c^4)*d^5 + 15*(4*b^5*c - 29*a*b^3*c^2 + 46*a^2*b*c^3)*d^3 + 2*(3*b^6 
 - 18*a*b^4*c + 7*a^2*b^2*c^2 + 50*a^3*c^3)*d)*e^3*x^3 + 2*a^2*b^4 - 16*a^ 
3*b^2*c + 32*a^4*c^2 + 2*(3*b^6 - 18*a*b^4*c + 7*a^2*b^2*c^2 + 50*a^3*c^3) 
*d^4 + (168*(b^4*c^2 - 7*a*b^2*c^3 + 10*a^2*c^4)*d^6 + 9*a*b^5 - 68*a^2*b^ 
3*c + 122*a^3*b*c^2 + 45*(4*b^5*c - 29*a*b^3*c^2 + 46*a^2*b*c^3)*d^4 + 12* 
(3*b^6 - 18*a*b^4*c + 7*a^2*b^2*c^2 + 50*a^3*c^3)*d^2)*e^2*x^2 + (9*a*b^5 
- 68*a^2*b^3*c + 122*a^3*b*c^2)*d^2 + 2*(24*(b^4*c^2 - 7*a*b^2*c^3 + 10*a^ 
2*c^4)*d^7 + 9*(4*b^5*c - 29*a*b^3*c^2 + 46*a^2*b*c^3)*d^5 + 4*(3*b^6 - 18 
*a*b^4*c + 7*a^2*b^2*c^2 + 50*a^3*c^3)*d^3 + (9*a*b^5 - 68*a^2*b^3*c + 122 
*a^3*b*c^2)*d)*e*x)/((a^3*b^4*c^2 - 8*a^4*b^2*c^3 + 16*a^5*c^4)*e^11*f^3*x 
^10 + 10*(a^3*b^4*c^2 - 8*a^4*b^2*c^3 + 16*a^5*c^4)*d*e^10*f^3*x^9 + (2*a^ 
3*b^5*c - 16*a^4*b^3*c^2 + 32*a^5*b*c^3 + 45*(a^3*b^4*c^2 - 8*a^4*b^2*c...
 
3.7.60.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1791 vs. \(2 (329) = 658\).

Time = 0.43 (sec) , antiderivative size = 1791, normalized size of antiderivative = 5.22 \[ \int \frac {1}{(d f+e f x)^3 \left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx=\text {Too large to display} \]

input
integrate(1/(e*f*x+d*f)^3/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x, algorithm="giac 
")
 
output
3/4*((a^4*b^8*c*e^3*f^3 - 14*a^5*b^6*c^2*e^3*f^3 + 70*a^6*b^4*c^3*e^3*f^3 
- 140*a^7*b^2*c^4*e^3*f^3 + 80*a^8*c^5*e^3*f^3)*sqrt(b^2 - 4*a*c)*log(abs( 
b*e^2*x^2 + sqrt(b^2 - 4*a*c)*e^2*x^2 + 2*b*d*e*x + 2*sqrt(b^2 - 4*a*c)*d* 
e*x + b*d^2 + sqrt(b^2 - 4*a*c)*d^2 + 2*a)) - (a^4*b^8*c*e^3*f^3 - 14*a^5* 
b^6*c^2*e^3*f^3 + 70*a^6*b^4*c^3*e^3*f^3 - 140*a^7*b^2*c^4*e^3*f^3 + 80*a^ 
8*c^5*e^3*f^3)*sqrt(b^2 - 4*a*c)*log(abs(-b*e^2*x^2 + sqrt(b^2 - 4*a*c)*e^ 
2*x^2 - 2*b*d*e*x + 2*sqrt(b^2 - 4*a*c)*d*e*x - b*d^2 + sqrt(b^2 - 4*a*c)* 
d^2 - 2*a)))/(a^8*b^8*c*e^4*f^6 - 16*a^9*b^6*c^2*e^4*f^6 + 96*a^10*b^4*c^3 
*e^4*f^6 - 256*a^11*b^2*c^4*e^4*f^6 + 256*a^12*c^5*e^4*f^6) - 1/4*(6*b^4*c 
^2*e^8*x^8 - 42*a*b^2*c^3*e^8*x^8 + 60*a^2*c^4*e^8*x^8 + 48*b^4*c^2*d*e^7* 
x^7 - 336*a*b^2*c^3*d*e^7*x^7 + 480*a^2*c^4*d*e^7*x^7 + 168*b^4*c^2*d^2*e^ 
6*x^6 - 1176*a*b^2*c^3*d^2*e^6*x^6 + 1680*a^2*c^4*d^2*e^6*x^6 + 336*b^4*c^ 
2*d^3*e^5*x^5 - 2352*a*b^2*c^3*d^3*e^5*x^5 + 3360*a^2*c^4*d^3*e^5*x^5 + 42 
0*b^4*c^2*d^4*e^4*x^4 - 2940*a*b^2*c^3*d^4*e^4*x^4 + 4200*a^2*c^4*d^4*e^4* 
x^4 + 12*b^5*c*e^6*x^6 - 87*a*b^3*c^2*e^6*x^6 + 138*a^2*b*c^3*e^6*x^6 + 33 
6*b^4*c^2*d^5*e^3*x^3 - 2352*a*b^2*c^3*d^5*e^3*x^3 + 3360*a^2*c^4*d^5*e^3* 
x^3 + 72*b^5*c*d*e^5*x^5 - 522*a*b^3*c^2*d*e^5*x^5 + 828*a^2*b*c^3*d*e^5*x 
^5 + 168*b^4*c^2*d^6*e^2*x^2 - 1176*a*b^2*c^3*d^6*e^2*x^2 + 1680*a^2*c^4*d 
^6*e^2*x^2 + 180*b^5*c*d^2*e^4*x^4 - 1305*a*b^3*c^2*d^2*e^4*x^4 + 2070*a^2 
*b*c^3*d^2*e^4*x^4 + 48*b^4*c^2*d^7*e*x - 336*a*b^2*c^3*d^7*e*x + 480*a...
 
3.7.60.9 Mupad [B] (verification not implemented)

Time = 24.18 (sec) , antiderivative size = 25334, normalized size of antiderivative = 73.86 \[ \int \frac {1}{(d f+e f x)^3 \left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx=\text {Too large to display} \]

input
int(1/((d*f + e*f*x)^3*(a + b*(d + e*x)^2 + c*(d + e*x)^4)^3),x)
 
output
(log(((27*c^5*e^16*x^2*(b^4 + 10*a^2*c^2 - 7*a*b^2*c)^3)/(a^9*f^9*(4*a*c - 
 b^2)^6) - ((3*b - 3*a^4*e*f^3*(-(b^6 - 20*a^3*c^3 + 30*a^2*b^2*c^2 - 10*a 
*b^4*c)^2/(a^8*e^2*f^6*(4*a*c - b^2)^5))^(1/2))*((9*c^3*e^15*(b^4 + 10*a^2 
*c^2 - 7*a*b^2*c)*(4*b^6 - 10*a^3*c^3 + 6*b^5*c*d^2 + 71*a^2*b^2*c^2 - 33* 
a*b^4*c - 47*a*b^3*c^2*d^2 + 90*a^2*b*c^3*d^2))/(a^6*f^6*(4*a*c - b^2)^4) 
- ((3*b - 3*a^4*e*f^3*(-(b^6 - 20*a^3*c^3 + 30*a^2*b^2*c^2 - 10*a*b^4*c)^2 
/(a^8*e^2*f^6*(4*a*c - b^2)^5))^(1/2))*((6*c^2*e^16*(2*b^7 - 20*a^3*b*c^3 
+ b^6*c*d^2 + 46*a^2*b^3*c^2 + 100*a^3*c^4*d^2 - 18*a*b^5*c - 2*a*b^4*c^2* 
d^2 - 30*a^2*b^2*c^3*d^2))/(a^3*f^3*(4*a*c - b^2)^2) + (b*c^2*e^16*(3*b - 
3*a^4*e*f^3*(-(b^6 - 20*a^3*c^3 + 30*a^2*b^2*c^2 - 10*a*b^4*c)^2/(a^8*e^2* 
f^6*(4*a*c - b^2)^5))^(1/2))*(a*b + 3*b^2*d^2 + 3*b^2*e^2*x^2 - 10*a*c*d^2 
 + 6*b^2*d*e*x - 10*a*c*e^2*x^2 - 20*a*c*d*e*x))/(a^4*f^3) + (6*c^3*e^18*x 
^2*(b^6 + 100*a^3*c^3 - 30*a^2*b^2*c^2 - 2*a*b^4*c))/(a^3*f^3*(4*a*c - b^2 
)^2) + (12*c^3*d*e^17*x*(b^6 + 100*a^3*c^3 - 30*a^2*b^2*c^2 - 2*a*b^4*c))/ 
(a^3*f^3*(4*a*c - b^2)^2)))/(4*a^4*e*f^3) + (9*b*c^4*e^17*x^2*(6*b^8 + 900 
*a^4*c^4 + 479*a^2*b^4*c^2 - 1100*a^3*b^2*c^3 - 89*a*b^6*c))/(a^6*f^6*(4*a 
*c - b^2)^4) + (18*b*c^4*d*e^16*x*(6*b^8 + 900*a^4*c^4 + 479*a^2*b^4*c^2 - 
 1100*a^3*b^2*c^3 - 89*a*b^6*c))/(a^6*f^6*(4*a*c - b^2)^4)))/(4*a^4*e*f^3) 
 + (27*c^4*e^14*(b^4 + 10*a^2*c^2 - 7*a*b^2*c)^2*(b^5 + 16*a^2*b*c^2 + b^4 
*c*d^2 + 10*a^2*c^3*d^2 - 8*a*b^3*c - 7*a*b^2*c^2*d^2))/(a^9*f^9*(4*a*c...